Scoring Tasks

Select your grade:

Task: Making Lemonade

Mary wants to make a small glass of lemonade and a large glass of lemonade. Mary needs the juice of four lemons to make a small glass of lemonade. Mary needs the juice of eight lemons to make a large glass of lemonade. Mary has fourteen lemons. Does Mary have enough lemons to make the two glasses of lemonade? Show all your mathematical thinking.

Aligned to the 1.OA.A.1 Standard

More on the 1.OA.A.1 Standard

Possible Solutions

Yes, Mary has enough lemons to make the 2 glasses of lemonade.

Click to enlarge

1.OA.A.1

Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.

Assess Student Performance

Click to enlarge
Assess Student #1’s work according to the following category:

No strategy is chosen, or a strategy is chosen that will not lead to a solution.

Little or no evidence of engagement in the task present.

A partially correct strategy is chosen, or a correct strategy for only solving part of the task is chosen.

Evidence of drawing on some relevant previous knowledge is present, showing some relevant engagement in the task.

A correct strategy is chosen based on the mathematical situation in the task.

Planning or monitoring of strategy is evident.

Evidence of solidifying prior knowledge and applying it to the problem-solving situation is present.

Note: The Practitioner must achieve a correct answer.

An efficient strategy is chosen and progress towards a solution is evaluated.

Adjustments in strategy, if necessary, are made along the way, and/or alternative strategies are considered.

Evidence of analyzing the situation in mathematical terms and extending prior knowledge is present.

Note: The Expert must achieve a correct answer.

Arguments are made with no mathematical basis.

No correct reasoning nor justification for reasoning is present.

Arguments are made with some mathematical basis.

Some correct reasoning or justification for reasoning is present.

Arguments are constructed with adequate mathematical basis.

A systematic approach and/or justification of correct reasoning is present.

Deductive arguments are used to justify decisions and may result in formal proofs.

Evidence is used to justify and support decisions made and conclusions reached.

No awareness of audience or purpose is communicated.

No formal mathematical terms or symbolic notations are evident.

Some awareness of audience or purpose is communicated.

Some communication of an approach is evident through verbal/written accounts and explanations.

An attempt is made to use formal math language. One formal math term or symbolic notation is evident.

A sense of audience or purpose is communicated.

Communication of an approach is evident through a methodical, organized, coherent, sequenced and labeled response.

Formal math language is used to share and clarify ideas. At least two formal math terms or symbolic notations are evident, in any combination.

A sense of audience and purpose is communicated.

Communication of an approach is evident through a methodical, organize, coherent, sequenced and labeled response. Communication of an argument is supported by mathematical properties.

Formal math language and symbolic notation is used to consolidate math thinking and to communicate ideas. At least one of the two formal math terms or symbolic notations is beyond grade level.

No connections are made or connections are mathematically or contextually irrelevant.

A mathematical connection is attempted but is partially incorrect or lacks contextual relevance.

A mathematical connection is made. Proper contexts are identified that link both the mathematics and the situation in the task.

Some examples may include one or more of the following:

  • clarification of the mathematical or situational context of the task
  • exploration of mathematical phenomenon in the context of the broader topic in which the task is situated
  • noting patterns, structures and regularities

Mathematical connections are used to extend the solution to other mathematics or to a deeper understanding of the mathematics in the task.

Some examples may include one or more of the following:

  • testing and accepting or rejecting of a hypothesis or conjecture
  • explanation of phenomenon
  • generalizing and extending the solution to other cases

No attempt is made to construct a mathematical representation.

An attempt is made to construct a mathematical representation to record and communicate problem solving but is not accurate.

An appropriate and accurate mathematical representation is constructed and refined to solve problems or portray solutions.

An appropriate mathematical representation is constructed to analyze relationships, extend thinking and clarify or interpret phenomenon.

This Achievement Level demonstrates little or no evidence of understanding the math concepts of the task.

This Achievement Level has the broadest range, from a student who is just beginning to demonstrate mathematical understanding to a student who almost meets the standard.

This Achievement Level meets the standard and is proficient in understanding the underlying mathematics of the task. A correct solution must be achieved.

This Achievement Level goes beyond the standard and shows a deeper understanding of the underlying mathematics.

Exemplars has assessed Student #1’s work in the following way:

Problem Solving:
Novice

The student's strategy of using a diagram to represent four, eight, and fourteen lemons, and adding all the lemons, does not work to solve the task. The student's answer, "26 lemons," is not correct.

Reasoning & Proof:
Apprentice

The student shows some correct reasoning of the underlying concepts of the task. The student demonstrates understanding of four lemons to one glass, eight lemons to one glass. The student does not understand that the sum of four and eight lemons should be compared to fourteen lemons.

Communication:
Apprentice

The student correctly uses the mathematical term diagram.

Connections:
Novice

The student does not make a mathematically relevant observation.

Representation:
Apprentice

The student's diagram is appropriate to part of the problem but is not accurate. The student diagrams an additional fourteen lemons, which does not support a correct answer. The student defines the lemons in the scribing.

Score Card:
Student #1

Problem Solving:

Unassigned

Reasoning & Proof:

Unassigned

Communication:

Unassigned

Connections:

Unassigned

Representation:

Unassigned

Overall Achievement Level:

Unassigned

Score Card:
Student #2

Problem Solving:

Unassigned

Reasoning & Proof:

Unassigned

Communication:

Unassigned

Connections:

Unassigned

Representation:

Unassigned

Overall Achievement Level:

Unassigned

Score Card:
Student #3

Problem Solving:

Unassigned

Reasoning & Proof:

Unassigned

Communication:

Unassigned

Connections:

Unassigned

Representation:

Unassigned

Overall Achievement Level:

Unassigned

Score Card:
Student #4

Problem Solving:

Unassigned

Reasoning & Proof:

Unassigned

Communication:

Unassigned

Connections:

Unassigned

Representation:

Unassigned

Overall Achievement Level:

Unassigned